Tr?id=183529647139117&ev=PageView&noscript=
ID # 31060370

2022 Kawasaki Ninja H2 Carbon

Call for Price
Overview
The Ninja H2 and Ninja H2 Carbon bring the mind-bending power of Kawasaki's supercharged hypersport machine to the street. Boasting a powerful 998cc in-line four supercharged engine, state-of-the-art electronics, and the latest Brembo brakes, the Ninja H2 and Ninja H2 Carbon amount to pure performance on the road.

FEATURING

  • 998cc, in-line four supercharged engine
  • Lightweight trellis frame
  • Fully adjustable high-performance racing suspension
  • Advanced electronics
  • Brembo Stylema brake calipers
  • TFT colour instrumentation
  • Smartphone connectivity

ADDITIONAL VEHICLE FEATURES

  • Street-legal hypersport performance
  • KYB AOS-II front fork and Öhlins TTX36 rear shock
  • Kawasaki Quick Shifter (KQS)
  • Kawasaki TRaction Control (KTRC–9 modes)
  • All-LED lighting
  • Carbon-fibre upper cowl
Specifications
Model
NINJA
Category Name
Motorcycles
Year
2022
Sale Type
New
Manufacturer
Kawasaki
Color
MIRROR COATED MATTE SPARK BLACK / CANDY FLAT BLAZED GREEN
TRACTION CONTROL (9 MODES)
KAWASAKI
Province
Ontario
power
Engine
998cc, liquid-cooled, 4-stroke, DOHC 16-valve in-line four
Ignition
Digital
Starting
Electric
Final Drive
Chain
Fuel System
Fuel injection: ø50 mm x 4 with dual injection
Lubrication
Forced lubrication, wet sump with oil cooler
Transmission
6-speed, return, dog-ring
Bore X Stroke
76.0 x 55.0 mm
Compression Ratio
8.5:1
details
Warranty
12 months
Wheelbase
1,455 mm (57.3 in)
Curb Mass**
238 kg (525 lb)
Seat Height
825 mm (32.5 in)
Fuel Capacity
17 litres
Road Clearance
130 mm (5.1 in)
Instrumentation
Analogue-style tachometer + full-colour TFT screen with digital speedometer, gear position indicator, odometer, dual trip meters, current mileage, average mileage, fuel consumption, bank angle display and max bank angle recording function, average speed, total time, coolant temperature, boost indicator, boost (intake air chamber) temperature, clock, and Economical Riding Indicator
Dimensions (L X W X H)
2,085 x 770 x 1,125 mm (82.1 x 30.3 x 44.3 in)
technology

 ASSIST & SLIPPER CLUTCH ASSIST & SLIPPER CLUTCH

Based on feedback from racing activities, the Assist & Slipper Clutch uses two types of cams (an assist cam and a slipper cam) to either drive the clutch hub and operating plate together or apart. 
 Under normal operation, the assist cam functions as a self-servo mechanism, pulling the clutch hub and operating plate together to compress the clutch plates. This allows the total clutch spring load to be reduced, resulting in a lighter clutch lever feel when operating the clutch. 
When excessive engine braking occurs  as a result of quick downshifts (or an accidental downshift)  the slipper cam comes into play, forcing the clutch hub and operating plate apart. This relieves pressure on the clutch plates to reduce back-torque and helps prevent the rear tire from hopping and skidding. This race-style function is particularly useful when sport or track riding. 

ECONOMICAL RIDING INDICATOR ASSIST & SLIPPER CLUTCH

Using high-precision electronic control for engine management, Kawasaki models can achieve a high level of fuel efficiency. However, fuel consumption is greatly affected by throttle use, gear selection, and other elements under the rider's control. The Economical Riding Indicator is a function that indicates when current riding conditions are consuming a low amount of fuel. The system continuously monitors fuel consumption, regardless of vehicle speed, engine speed, throttle position and other riding conditions. When fuel consumption is low for a given speed (i.e. fuel efficiency is high), an "ECO" mark appears on the instrument panel's LCD screen. By riding so that the "ECO" mark remains on, fuel consumption can be reduced. 
While effective vehicle speed and engine speed may vary by model, paying attention to conditions that cause the "ECO" mark to appear can help riders improve their fuel efficiency a handy way to increase cruising range. Further, keeping fuel consumption low also helps minimize negative impact on the environment.               

ELECTRONIC THROTTLE VALVES ASSIST & SLIPPER CLUTCH

Kawasaki fully electronic throttle actuation system enables the ECU to control the volume of both the fuel (via fuel injectors) and the air (via throttle valves) delivered to the engine. Ideal fuel injection and throttle valve position results in smooth, natural engine response and the ideal engine output. The system also makes a significant contribution to reduced emissions. 
Electronic throttle valves also enable more precise control of electronic engine management systems like S-KTRC and KTRC, and allow the implementation of electronic systems like KLCM, Kawasaki Engine Brake Control, and Electronic Cruise Control.

KAWASAKI ENGINE BRAKE CONTROL

The Kawasaki Engine Brake Control system allows riders to select the amount of engine braking they prefer. When the system is activated, the engine braking effect is reduced, providing less interference when riding on the track.

 KCMF (KAWASAKI CORNERING MANAGEMENT FUNCTION) ASSIST & SLIPPER CLUTCH

Using the latest evolution of Kawasaki’s advanced modeling software and feedback from a compact IMU (Inertial Measurement Unit) that gives an even clearer real-time picture of chassis orientation, KCMF monitors engine and chassis parameters throughout the corner – from entry, through the apex, to corner exit – modulating brake force and engine power to facilitate smooth transition from acceleration to braking and back again, and to assist riders in tracing their intended line through the corner. The systems that KCMF oversees vary by model, but may include:
• S-KTRC/KTRC (including traction management and wheel lift management)
• KLCM (including traction management and wheel lift management)
      - Designed to optimize acceleration from a stop
• KIBS (including pitching management and corner braking management)
• Kawasaki Engine Brake Control

KLCM (KAWASAKI LAUNCH CONTROL MODE) ASSIST & SLIPPER CLUTCH

Designed to assist riders by optimizing acceleration from a stop, KLCM electronically manages engine output to minimize wheel spin when moving off. With the clutch lever pulled in and the system activated, engine speed is limited to a determined speed while the rider holds the throttle open. Once the rider releases the clutch lever to engage the clutch, engine speed is allowed to increase, but power is regulated to minimize wheel spin and help keep the front wheel on the ground. The system disengages automatically once a predetermined speed has been reached, or when the rider shifts into third gear. Depending on the model, riders can choose from multiple modes, each offering a progressively greater level of intrusion.

 

KQS (KAWASAKI QUICK SHIFTER) ASSIST & SLIPPER CLUTCH

Designed to help riders maximize their acceleration on the track by enabling clutchless upshifts with the throttle fully open, KQS detects that the shift lever has been actuated and sends a signal to the ECU to cut ignition so that the next gear can be engaged without having to use the clutch. On models that offer clutchless downshifts, during deceleration the system automatically controls engine speed so that the next lower gear can be selected without operating the clutch.

KTRC (KAWASAKI TRACTION CONTROL) ASSIST & SLIPPER CLUTCH

KTRC, Kawasaki's advanced traction control system provides both enhanced sport riding performance and the peace of mind to negotiate slippery surfaces with confidence. Multiple rider-selectable modes (the number of modes varies by model) offer progressively greater levels of intrusion to suit the riding situation and rider preference.

Less intrusive modes maintain optimum traction during cornering. Designed with sport riding in mind, they facilitate acceleration out of corners by maximizing forward drive from the rear wheel. And because Kawasaki’s sophisticated software bases its dynamic analysis on the chassis’ orientation relative to the track surface (rather than relative to a horizontal plane), it is able to take into account corner camber, gradient, etc., and adapt accordingly.

In the more intrusive modes (and for some models, in any mode), when excessive wheel spin is detected, engine output is reduced to allow grip to be regained, effectively enabling riders to negotiate both short, slippery patches (train tracks or manhole covers) and extended stretches of bad roads (wet pavement, cobblestone, gravel) with confidence.

Models equipped with IMU incorporate chassis-orientation feedback to offer even more precise management.

SMARTPHONE CONNECTIVITY ASSIST & SLIPPER CLUTCH

Clever technology enables riders to connect to their motorcycle wirelessly. Using the smartphone application “RIDEOLOGY THE APP,” a number of instrument functions can be accessed, contributing to an enhanced motorcycling experience. Vehicle information (such as the odometer, fuel gauge, maintenance schedule, etc) can be viewed on the smartphone. Riding logs (varies by model, but may include GPS route, gear position, rpm, and other information) can be viewed on the smartphone. When connected, telephone (call, mail) notices are displayed on the instrument panel. Riders can also make changes to their motorcycle’s instrument display settings (preferred units, clock and date setting, etc) via the smartphone. And on certain models, it is even possible to check and adjust vehicle settings (such as Rider Mode, electronic rider support features, and payload settings) using the smartphone.

 

 

SUPERCHARGED ENGINE ASSIST & SLIPPER CLUTCH

Drawing on the know-how and technology possessed by the Kawasaki Heavy Industries, Ltd. (KHI), Kawasaki’s supercharged engine delivers high engine output while maintaining a compact design. The key to achieving this incredible performance lies in the engine’s supercharger – a motorcycle-specific unit designed completely in-house with technology from the Kawasaki Gas Turbine & Machinery Company, Aerospace Company and Corporate Technology Division.

One of the greatest benefits of designing the supercharger in-house and tailoring its design to match the engine’s characteristics was that engineers were able to achieve high-efficiency operation over a wide range of conditions – something that would not have been possible by simply dropping in or trying to adapt an aftermarket automotive supercharger.

The importance of high efficiency in a supercharger is that, as the air is compressed, power-robbing heat gain is minimal. And while many superchargers are able to offer high-efficiency operation in a very limited range of conditions, the Kawasaki supercharger offers high efficiency over a wide range of pressure ratios and flow rates – meaning over a wide range of engine speeds and vehicle speeds. This wide range of efficient operation (similar to having a wide power band) easily translates to strong acceleration. The supercharger’s high efficiency and minimal heat gain also meant that an intercooler was unnecessary, greatly saving weight and space, and enabling the engine’s compact design.

 ABS (ANTI-LOCK BRAKE SYSTEM)

Kawasaki ABS systems use front and rear wheel sensors to constantly monitor wheel speed. Should information from either of the sensors indicate that wheel lock has occurred, the ABS ECU directs the pump in the ABS unit to modulate brake fluid pressure (releasing and reapplying pressure so that traction can be regained) until normal operation resumes. ABS offers rider reassurance that contributes to greater riding enjoyment.

IMU-ENHANCED CHASSIS ORIENTATION AWARENESS ASSIST & SLIPPER CLUTCH

The strength of Kawasaki cutting-edge electronics has always been the highly sophisticated programming that, using minimal hardware, gives the ECU an accurate real-time picture of what the chassis is doing. Kawasaki  proprietary dynamic modeling program makes skillful use of the magic formula tire model as it examines changes in multiple parameters, enabling it to take into account changing road and tire conditions. 
The addition of an IMU (Inertial Measurement Unit) enables inertia along 6 DOF (degrees of freedom) to be monitored. Acceleration along longitudinal, transverse and vertical axes, plus roll rate and pitch rate are measured. The yaw rate is calculated by the ECU using Kawasaki original software. This additional feedback contributes to an even clearer real-time picture of chassis orientation, enabling even more precise management for control at the limit.
With the addition of the IMU and the latest evolution of Kawasaki advanced modeling software, Kawasaki electronic engine and chassis management technology takes the step to the next level changing from setting-type and reaction-type systems to feedback-type systems to deliver even greater levels of riding excitement

KIBS (KAWASAKI INTELLIGENT ANTI-LOCK BRAKE SYSTEM) ASSIST & SLIPPER CLUTCH

Kawasaki developed KIBS to take into account the particular handling characteristics of supersport motorcycles, ensuring highly efficient braking with minimal intrusion during sport riding. It is the first mass-production brake system to link the ABS ECU (Electronic Control Unit) and engine ECU. In addition to front and rear wheel speed, KIBS monitors front brake caliper hydraulic pressure, throttle position, engine speed, clutch actuation and gear position. This diverse information is analyzed to determine the ideal front brake hydraulic pressure. Through precise control, hydraulic pressure is modulated in much smaller increments than with standard ABS systems. The system limits rear wheel lift under heavy braking and takes downshifting into account while braking, allowing the rider to manage the rear brake. And because of the finer control, kickback to the brake lever is minimal, resulting in a very natural feeling.

SILVER-MIRROR PAINT ASSIST & SLIPPER CLUTCH

Kawasaki's high-quality original paint has a highly reflective, glasslike metal appearance. Its debut on the 2015 Ninja H2™ and Ninja H2™R marked its first use on a mass-production vehicle in either the automotive or motorcycle industry. In the shade the paint has the appearance of its base coat color, but once in the sunlight its highly reflective surface takes on the appearance of the surrounding scenery. The stark difference in the way the paint appears in the light and the shade emphasizes the sculpted shape of the bodywork on which it is applied. The highly reflective surface is created by inducing a silver mirror reaction (a chemical reaction between a solution of silver ions and a reducing agent) that forms a layer of pure silver (Ag). This Ag layer is what creates the paint glasslike metal appearance. Compared to candy paints, which use aluminum flakes to generate a sparkling effect, the Ag layer appears as a uniform metallic surface. In the shade the Ag layer is translucent, allowing the base coat color to show through. This gives the paint a deep, three-dimensional quality. While the multiple layers of paint on typical mass-production models are done by robot painters, for this silver-mirror paint each layer  from primer to clear coat is carefully finished by the hands of Kawasaki craftsmen to ensure a flawless, lustrous surface.

performance
Frame
Trellis, high-tensile steel, with Swingarm Mounting Plate
Rear Tire
200/55ZR17M/C (78W)
Front Tire
120/70ZR17M/C (58W)
Rear Brake
ø250 mm disc with Brembo, opposed 2-piston caliper
Front Brake
Dual semi-floating ø330 mm Brembo discs with radial-mount, Brembo Stylema monobloc, opposed 4-piston calipers
Rake / Trail
24.5° / 103 mm
Steering Angle (L/R)
27° / 27°
Rear Suspension / Wheel Travel
New Uni Trak, Öhlins TTX36 gas-charged shock with piggyback reservoir, compression and rebound damping and spring preload adjustability, and top-out spring / 135 mm (5.3 in)
Front Suspension / Wheel Travel
ø43 mm inverted fork with rebound and compression damping, spring preload adjustability and top-out springs / 120 mm (4.7 in)